// 1: [6, 1, 1, 1, 1, 1, 1, 1, 1]
// 2: [1, 6, 1, 1, 1, 1, 1, 1, 1]
// 3: [1, 1, 6, 1, 1, 1, 1, 1, 1]
// 4: [1, 1, 1, 6, 1, 1, 1, 1, 1]
// 5: [1, 1, 1, 1, 6, 1, 1, 1, 1]
// 6: [1, 1, 1, 1, 1, 6, 1, 1, 1]
// 7: [1, 1, 1, 1, 1, 1, 6, 1, 1]
// 8: [1, 1, 1, 1, 1, 1, 1, 6, 1]
// 9: [1, 1, 1, 1, 1, 1, 1, 1, 6]
using System;
public static class PermutationsWithRep
{
private static int numberOfCombos;
public static void Main()
{
var collection = new[] { 6, 1, 1, 1, 1, 1, 1, 1, 1 };
PermuteRep(collection);
}
private static void PermuteRep<T>(T[] workArray, int? end = null, int start = 0)
where T : IComparable<T>
{
if (end == null)
{
end = workArray.Length - 1;
}
PrintPerm(workArray);
for (int left = end.Value - 1; left >= start; left--)
{
for (int right = left + 1; right <= end; right++)
if (workArray[left].CompareTo(workArray[right]) != 0)
{
Swap(ref workArray[left], ref workArray[right]);
PermuteRep(workArray, end, left + 1);
}
var firstElement = workArray[left];
for (int i = left; i <= end.Value - 1; i++)
{
workArray[i] = workArray[i + 1];
}
workArray[end.Value] = firstElement;
}
}
private static void Swap<T>(ref T a, ref T b)
{
var temp = a;
a = b;
b = temp;
}
private static void PrintPerm<T>(T[] arr)
{
Console.WriteLine($"{++numberOfCombos}: [{string.Join(", ", arr)}]");
}
}
Tag: generic
Generic BinaryHeap implementation with C#
namespace BinaryHeap
{
using System;
using System.Collections.Generic;
public class BinaryHeap<T> where T : IComparable<T>
{
private IList<T> heap;
public BinaryHeap(T[] elements = null)
{
if (elements != null)
{
this.heap = new List<T>(elements);
for (int i = elements.Length / 2; i >= 0; i--)
{
this.HeapifyDown(i);
}
}
else
{
this.heap = new List<T>();
}
}
public int Count
{
get
{
return this.heap.Count;
}
}
public T ExtractMax()
{
var max = this.heap[0];
this.heap[0] = this.heap[this.Count - 1];
this.heap.RemoveAt(this.Count - 1);
if (this.Count > 0)
{
this.HeapifyDown(0);
}
return max;
}
public T PeekMax()
{
var max = this.heap[0];
return max;
}
public void Insert(T node)
{
this.heap.Add(node);
this.HeapifyUp(this.Count - 1);
}
private void HeapifyDown(int i)
{
var leftChild = (i * 2) + 1;
var rightChild = (i * 2) + 2;
var biggest = i;
if (leftChild < this.Count && this.heap[leftChild].CompareTo(this.heap[biggest]) > 0)
{
biggest = leftChild;
}
if (rightChild < this.Count && this.heap[rightChild].CompareTo(this.heap[biggest]) > 0)
{
biggest = rightChild;
}
if (biggest != i)
{
T old = this.heap[i];
this.heap[i] = this.heap[biggest];
this.heap[biggest] = old;
this.HeapifyDown(biggest);
}
}
private void HeapifyUp(int i)
{
var parent = (i - 1) / 2;
while (i > 0 && this.heap[i].CompareTo(this.heap[parent]) > 0)
{
var temp = this.heap[parent];
this.heap[parent] = this.heap[i];
this.heap[i] = temp;
i = parent;
parent = (i - 1) / 2;
}
}
}
}
Simple implementation of generic BINARY TREE in C#
using System;
public class BinaryTree
{
public BinaryTree(
T value,
BinaryTree leftNode = null,
BinaryTree rightNode = null)
{
this.Value = value;
this.LeftNode = leftNode;
this.RightNode = rightNode;
}
public T Value { get; private set; }
public BinaryTree LeftNode { get; private set; }
public BinaryTree RightNode { get; private set; }
public void EachPreOrder(Action action)
{
action(this.Value);
if (this.LeftNode != null)
{
this.LeftNode.EachPreOrder(action);
}
if (this.RightNode != null)
{
this.RightNode.EachPreOrder(action);
}
}
public void EachInOrder(Action action)
{
if (this.LeftNode != null)
{
this.LeftNode.EachPreOrder(action);
}
action(this.Value);
if (this.RightNode != null)
{
this.RightNode.EachPreOrder(action);
}
}
public void EachPostOrder(Action action)
{
if (this.LeftNode != null)
{
this.LeftNode.EachPreOrder(action);
}
if (this.RightNode != null)
{
this.RightNode.EachPreOrder(action);
}
action(this.Value);
}
}
Simple implementation of generic TREE in C#
using System;
using System.Collections.Generic;
public class Tree<T>
{
public Tree(
T value,
params Tree<T>[] children)
{
this.Value = value;
this.Children = new List<Tree<T>>();
foreach (var child in children)
{
this.Children.Add(child);
}
}
public T Value { get; private set; }
public ICollection<Tree<T>> Children { get; private set; }
public void EachTree(Action<T> action)
{
action(this.Value);
foreach (var child in this.Children)
{
child.EachTree(action);
}
}
public void PrintTree(int indent = 0)
{
Console.WriteLine(new string(' ', indent * 2) + this.Value);
indent++;
foreach (var child in this.Children)
{
child.PrintTree(indent);
}
}
}
Simple dynamic implementation of generic STACK in C#
using System;
public class LinkedStack<T>
{
private LinkedStackNode<T> firstNode;
public int Count { get; private set; }
public void Push(T element)
{
var newNode = new LinkedStackNode<T>(element);
newNode.NextNode = this.firstNode;
this.firstNode = newNode;
this.Count++;
}
public T Pop()
{
if (this.Count <= 0)
{
throw new InvalidOperationException("Stack is empty.");
}
var nodeToPop = this.firstNode;
this.firstNode = this.firstNode.NextNode;
this.Count--;
return nodeToPop.Value;
}
public T Peek()
{
var nodeToPeek = this.firstNode;
return nodeToPeek.Value;
}
public T[] ToArray()
{
var arr = new T[this.Count];
var currentNode = this.firstNode;
var arrIndex = 0;
while (currentNode != null)
{
arr[arrIndex] = currentNode.Value;
arrIndex++;
currentNode = currentNode.NextNode;
}
return arr;
}
private class LinkedStackNode<T>
{
public LinkedStackNode(
T value,
LinkedStackNode<T> nextNode = null)
{
this.Value = value;
}
public T Value { get; private set; }
public LinkedStackNode<T> NextNode { get; set; }
}
}
Simple static implementation of generic STACK in C#
using System;
public class ArrayStack<T> : IArrayStack<T>
{
private const int InitialCapacity = 16;
private T[] internalStorage;
private int capacity;
public ArrayStack(int capacity = InitialCapacity)
{
this.Capacity = capacity;
this.internalStorage = new T[this.Capacity];
}
public int Count { get; private set; }
private int Capacity
{
get
{
return this.capacity;
}
set
{
if (value <= 0)
{
throw new ArgumentOutOfRangeException(
nameof(value),
"Capacity should be positive integer number.");
}
this.capacity = value;
}
}
public void Push(T element)
{
if (this.GrowNeeded())
{
this.Grow();
}
this.internalStorage[this.Count] = element;
this.Count++;
}
public T Pop()
{
if (this.Count <= 0)
{
throw new InvalidOperationException("Stack is empty.");
}
this.Count--;
var element = this.internalStorage[this.Count];
this.internalStorage[this.Count] = default(T);
return element;
}
public T Peek()
{
var element = this.internalStorage[this.Count - 1];
return element;
}
public T[] ToArray()
{
var arr = new T[this.Count];
this.FillStorage(arr);
Array.Reverse(arr);
return arr;
}
private bool GrowNeeded()
{
var result = this.Count >= this.Capacity;
return result;
}
private void Grow()
{
this.Capacity *= 2;
var newStorage = new T[this.Capacity];
this.FillStorage(newStorage);
this.internalStorage = newStorage;
}
private void FillStorage(T[] array)
{
Array.Copy(this.internalStorage, array, this.Count);
}
}
Simple dynamic implementation of generic QUEUE in C#
using System;
public class LinkedQueue<T>
{
private LinkedQueueNode<T> start;
private LinkedQueueNode<T> end;
public LinkedQueue()
{
this.Count = 0;
}
public int Count { get; private set; }
public void Enqueue(T element)
{
var newElement = new LinkedQueueNode<T>(element);
if (this.Count == 0)
{
this.start = this.end = newElement;
}
else
{
this.end.Next = newElement;
this.end = newElement;
}
this.Count++;
}
public T Dequeue()
{
if (this.Count <= 0)
{
throw new InvalidOperationException("Queue is empty.");
}
var elementToReturn = this.start;
this.start = this.start.Next;
this.Count--;
return elementToReturn.Value;
}
public T Peak()
{
if (this.Count <= 0)
{
throw new InvalidOperationException("Queue is empty.");
}
var currentElement = this.start.Value;
return currentElement;
}
public T[] ToArray()
{
var arrToReturn = new T[this.Count];
var currentNode = this.start;
var arrIndex = 0;
while (currentNode != null)
{
arrToReturn[arrIndex] = currentNode.Value;
arrIndex++;
currentNode = currentNode.Next;
}
return arrToReturn;
}
private class LinkedQueueNode<T>
{
public LinkedQueueNode(T value)
{
this.Value = value;
}
public T Value { get; private set; }
public LinkedQueueNode<T> Next { get; set; }
}
}
Simple static implementation of generic QUEUE in C#
public class CircularQueue<T>
{
private const int InitialCapacity = 16;
private T[] storage;
private int capacity;
private int startIndex;
private int endIndex;
public CircularQueue(int capacity = InitialCapacity)
{
this.Capacity = capacity;
this.storage = new T[this.Capacity];
}
public int Count { get; private set; }
private int Capacity
{
get
{
return this.capacity;
}
set
{
if (value <= 0)
{
throw new ArgumentOutOfRangeException(
nameof(value),
"Queue capacity should be a positive integer");
}
this.capacity = value;
}
}
public void Enqueue(T element)
{
if (this.GrowNeeded())
{
this.Grow();
}
this.storage[this.endIndex] = element;
this.endIndex = (this.endIndex + 1) % this.Capacity;
this.Count++;
}
public T Dequeue()
{
if (this.Count <= 0)
{
throw new InvalidOperationException("Queue is empty.");
}
var element = this.storage[this.startIndex];
this.storage[this.startIndex] = default(T);
this.startIndex = (this.startIndex + 1) % this.Capacity;
this.Count--;
return element;
}
public T[] ToArray()
{
var resultArray = new T[this.Count];
this.ResizeArrayStorage(resultArray);
return resultArray;
}
private bool GrowNeeded()
{
var result = this.Count >= this.Capacity;
return result;
}
private void Grow()
{
var newStorage = new T[this.Capacity * 2];
this.ResizeArrayStorage(newStorage);
this.startIndex = 0;
this.endIndex = this.Capacity;
this.Capacity *= 2;
this.storage = newStorage;
}
private void ResizeArrayStorage(T[] array)
{
for (int i = 0; i < this.Count; i++)
{
var currentIndex = (this.startIndex + i) % this.Capacity;
array[i] = this.storage[currentIndex];
}
}
}
How to generate Variations without repetition recursively in C#
using System;
using System.Linq;
class VariationsWithoutRepetition
{
const int k = 2;
const int n = 4;
static int[] arr = new int[k];
static int[] free = Enumerable.Range(1, 4).ToArray();
static void Main()
{
GenerateVariationsNoRepetitions(0);
}
static void GenerateVariationsNoRepetitions(int index)
{
if (index >= k)
{
PrintVariations();
}
else
{
for (int i = index; i < n; i++)
{
arr[index] = free[i];
Swap(ref free[i], ref free[index]);
GenerateVariationsNoRepetitions(index + 1);
Swap(ref free[i], ref free[index]);
}
}
}
private static void Swap<T>(ref T v1, ref T v2)
{
T old = v1;
v1 = v2;
v2 = old;
}
static void PrintVariations()
{
Console.WriteLine("(" + string.Join(", ", arr) + ")");
}
}
// result:
// (1, 2)
// (1, 3)
// (1, 4)
// (2, 1)
// (2, 3)
// (2, 4)
// (3, 2)
// (3, 1)
// (3, 4)
// (4, 2)
// (4, 3)
// (4, 1)
How to generate Permutations without repetition recursively in C#
using System;
class GroupPermutations
{
static void Main(string[] args)
{
string[] array = { "apple", "peach", "orange" };
Perm(array, 0);
}
static void Perm<T>(T[] arr, int k)
{
if (k >= arr.Length)
Print(arr);
else
{
Perm(arr, k + 1);
for (int i = k + 1; i < arr.Length; i++)
{
Swap(ref arr[k], ref arr[i]);
Perm(arr, k + 1);
Swap(ref arr[k], ref arr[i]);
}
}
}
private static void Swap<T>(ref T item1, ref T item2)
{
T temp = item1;
item1 = item2;
item2 = temp;
}
private static void Print<T>(T[] arr)
{
Console.WriteLine("{" + string.Join(", ", arr) + "}");
}
}
//Result:
//{apple, peach, orange}
//{apple, orange, peach}
//{peach, apple, orange}
//{peach, orange, apple}
//{orange, peach, apple}
//{orange, apple, peach}